
Submitted to:
IMPEX’2017

c© S. Conchon, D. Declerck & F. Zaïdi

Parameterized Model Checking
Modulo Explicit Weak Memory Models

Sylvain Conchon
LRI (CNRS & Univ. Paris-Sud),

Université Paris-Saclay, F-91405 Orsay
Inria, Université Paris-Saclay, F-91120 Palaiseau

sylvain.conchon@lri.fr

David Declerck
LRI (CNRS & Univ. Paris-Sud),

Université Paris-Saclay, F-91405 Orsay
Inria, Université Paris-Saclay, F-91120 Palaiseau

david.declerck@u-psud.fr

Fatiha Zaïdi
LRI (CNRS & Univ. Paris-Sud),

Université Paris-Saclay, F-91405 Orsay
fatiha.zaidi@lri.fr

We present a modular framework for model checking parameterized array-based transition systems
with explicit access operations on weak memory. Our approach extends the MCMT (Model Checking
Modulo Theories) framework of Ghilardi and Ranise [10] with explicit weak memory models. We
have implemented this new framework in Cubicle-W , an extension of the Cubicle model checker.
The modular architecture of our tool allows us to change the underlying memory model seamlessly
(TSO, PSO...). Our first experiments with a TSO-like memory model look promising.

1 Introduction

With the emerging of multi-core architectures, concurrent (or multi-threading) programming is becoming
a standard practice for boosting the efficiency of an application. To be as efficient as possible, concur-
rent programs are designed to be run for an arbitrary number of cores. Unfortunately, in practice, the
conception and programming of such parameterized programs is error-prone and hard to debug.

The situation is even worse if we consider that modern computer architectures feature weak memory
models in which the different processes of a program may not perceive memory operations to happen in
the same order. For instance, under the TSO memory model, write operations made by a process might
not be immediately visible to all other processes, while they are instantly visible to the process that
performs them. The new behaviors induced by these memory models make it hard to design concurrent
programs as one has now to take into account both interleavings and reordering of events.

To help debugging such applications, one can use model checking [7, 4, 3, 9, 6, 2], an efficient formal
technique used for verifying safety of parameterized concurrent programs [7]. For instance, one can use
Cubicle [8], a model checker for array-based transition systems [10], a restricted class of parameterized
systems where states are represented as logical formulas manipulating (unbounded) arrays indexed by
process identifiers.

However, the MCMT [11] (Model Checking Modulo Theories) framework underlying Cubicle im-
plicitly assumes a sequentially consistent (SC) memory model: the semantics of read and write operations
is simply given by the order in which the operations are executed, and the process actually performing
the operation is irrelevant (all processes share the same view of the memory).

In this paper, we propose an extension of MCMT [11] with explicit read and write operations for
weak memories. Our weak memory reasoning is based on the axiomatic framework of Alglave et al. [5],

2 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

which describes the semantics of different weak memory models using events and relations over these
events. More specifically, read and write operations on weak variables give rise to events, and according
to the dependencies between these events, we build a global-happens-before relation (ghb) over these
events, which orders these events in a global timeline, as depicted in the schema below.

P1
e1

P2
e2 e6

...
Pn−1

e3 e5 e7

Pn
e4

ghb

ghb

ghb

ghb

In order to build this happens-before relation (ghb), we instruments the backward reachability anal-
ysis by (1) generating events for read and write operations on weak memory and (2) building on the fly a
ghb relation on this events. The coherence of this relation is checked by an SMT solver, modulo a weak
memory theory.

In the rest of the paper, we assume a TSO-like memory model[12], though this framework is modular:
by changing how the ghb relation is built, other weak memory models can be expressed.

2 Preliminaries : axiomatic memory models

Our approach relies on an axiomatic model of weak memory. In this section, we give a brief presentation
of this kind of models, based on the formalism of Alglave et al. [5]. Our presentation will be oriented
towards a TSO-like model, but other models can be expressed using the same formalism.

We consider a concurrent program P composed of n processes i1...in, each executing a sequence of
instructions s1...sn. For simplicity, we consider instructions to be either read or write operations on weak
variables.

These instructions are mapped to events, which are given a unique event identifier. Note that when
an instruction is executed several times (for instance in loops), it will be given a new event identifier each
time it is considered. A read event is described by a literal of the form Rdα(e, i), where α is the weak
variable being read, e is the event identifier, and i is the identifier of the process performing the operation.
Similarly, a write event is described by a literal of the form Wrα(e, i), where α , e and i have the same
meaning as before. The value associated to an event e on a variable α is given by a function Valα(e).

Then, depending on the properties of these events, different relations are built, and a global-happens-
before relation (ghb) is derived from them. All these relations order the events using their unique identi-
fiers. The set of events together with the different relations constitutes a candidate execution. If the ghb
relation is a valid partial order (i.e. is acyclic), then the execution is considered valid.

The first relation is implied by the program’s source code:

• program order (po) is a total order on all events of a process ; it orders the events in the same order
as the source code

Under our TSO-like memory model, this relation allows to derive two new relations:

S. Conchon, D. Declerck & F. Zaïdi 3

• preserved program order (ppo) is a partial order on the events of a process which represents the
events that remain ordered under the weak memory semantics ; it is defined as the subset of event
pairs in po minus the write-read pairs

• fence indicates which write-read pairs in po are separated by a fence instruction ; it allows to
maintain the order between events that would otherwise not be ordered in ppo

The next two relations depend on the actual execution of the program:

• coherence (co) is a total order on all writes to the same variable ; it represents the order in which
the writes are made globally visible

• read-from (rf) orders each write with the reads it provides its value to

These two relations allow to derive two new relations:

• from-read (fr) indicates reads that occur before some write becomes globally visible ; is is defined
as follows: ∀e1,e2,e2·r f (e1,e2)∧ co(e1,e3)→ f r(e2,e3)

• external read-from (rfe) is defined as the subset of event pairs in rf that belong to different pro-
cesses

Finally, the ghb relation is defined as the transitive closure of the union of some of these relations:

ghb = (ppo ∪ f ence ∪ co ∪ r f e ∪ f r)+

This relation represents the order in which events appear to be ordered, from a global viewpoint. The
key to the process of finding a feasible execution is thus to determine a co and rf relation that make the
derived ghb relation acyclic.

Note that the axiomatic model of Alglave et al. specifies an auxiliary check (sequential consistency
per variable), that we do not mention here. Indeed, for TSO, the exploration strategy we use (described
in the next section) makes this check unnecessary.

Extensions for atomicity

In order to use this framework with array-based transition systems, that may manipulate several different
variables in a single transition, we must make some adjustments.

First, we allow several events of the same kind and by the same process to share the same event
identifier. This is useful for instance, if we want to have two reads by a process to occur simultaneously,
without any other event from another process interfering. Similarly, a process may write to two variables
at the same time. This means that the writes will be made globally visible to the other processes simul-
taneously. This does not require any particular change to the model: the form of literal we use already
allows this, and building the relations considers the events independently. For instance, let’s consider
three processes i, j and k, two event identifiers e1 and e2, and the four events Wrα(e1, i), Wrβ (e1, i),
Rdα(e2, j) and Rdβ (e3,k). The two write events use the same identifier e1 and belong to the same pro-
cess i, but write to different variables. Then, we may have both r f (e1,e2) and r f (e1,e3), even if e2 and
e3 do not read from the same variable.

Another extension we need is that we must be able to (optionally) specify that a read followed by a
write from the same process occur atomically, without any other event from another process interfering.
This means that, from a global point of view, the events appear to happen simultaneously. For this
purpose, we add a symmetric, reflexive and transitive ghb-equal relation, and redefine the ghb relation
as follows:

ghb = (ppo ∪ f ence ∪ co ∪ r f e ∪ f r ∪ ghb-equal)+ \ghb-equal

4 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

This means that ghb-equal is only used to expand the transitive closure of ghb, however events that
are ghb-equal are removed from the actual ghb relation (otherwise we wouldn’t be able to tell whether
ghb is acyclic).

3 Weak Memory Array-Based Transition Systems

In our approach, programs are described by parameterized transition systems, i.e. systems manipulating
variables and process-indexed arrays using guard-action transitions. From the programmer’s point of
view, the notion of event is irrelevant: accesses to variables and arrays are literally understood as direct
accesses. However, during our analysis, we try to build a ghb relation on-the-fly, hence, we also need
to be able to represents events and the relations over these events. To accommodate for these different
points of view, we define two different logic languages: a description language LD , in which the events
are implicit, and a language LE that makes these events explicit. We use translation functions to translate
a system from the description language LD to the explicit language LE . To factor out the common parts
between these two languages, we define a base language LB, and we have LB ⊂LD and LB ⊂LE .

Base language

We define the base language LB as follows:

const, c ::= constants
proc, i, j, k ::= process variables

x, y, z ::= regular (= non-weak) arrays
α , β , γ ::= weak variables and arrays

op ::= = | 6= | < | ≤
term, t ::= c | i | x[j]

atom, a ::= t op t | true | false
literal, l ::= a | ¬a

qf_form, qff ::= l | qff ∧ qff

This language defines quantifier free formulas, which are conjunctions of literals (or their negation).
A literal is either true, false, or a comparison between two terms. A term is either a constant, a process
variable, or the access to a regular array cell.

Description language

We define the description language LD as a superset of LB:

term, t ::= ... | α | α[j] | i @ α | i @ α[j]
atom, a ::= ... | fence()

uformula, uf ::= ∀~j : proc. qff
eformula, ef ::= ∃~j : proc. qff

The description language includes the base language, and defines new terms for accessing the weak
variables. i @ α[j] and i @ α[j] represent accesses to weak variables by a specific process i, while α

and α[j] do not explicitly specify the accessing process. The context dictates which of these two forms
of access must be used. The language also defines a fence() predicate, which is true for some process
when its writes become globally visible to all other processes. Finally, we define formulas prefixed by
an existentially or universally quantified process variable.

S. Conchon, D. Declerck & F. Zaïdi 5

Explicit language

We define the explicit language LE as a superset of LB:

eid, e ::= event identifiers
term, t ::= ... | Valα (e) | Valα (e, j)

atom, a ::= ... | Rdα (e, i) | Rdα (e, i, j)
| Wrα (e, i) | Wrα (e, i, j)
| fence(e, i) | ghb(e, e) | ghb-equal(e, e)

qf_form, qff ::= ... | qff ∨ qff
formula, f ::= qff | ∀~x : type. f | ∃~x : type. f

The new Rdα terms allow to represent the read events, while the Wrα terms represent the write
events. The Valα terms specify the value associated to events. ghb(e, e) and ghb-equal(e, e) allow to
encode the ghb and ghb-equal relations. The fence predicate indicates that there is a fence before some
event e (it is not to be confused with the fence literal in LD , although the two are related). We also allow
for more general formulas by adding disjunctions and quantification over types other than proc.

Note that Valα , Rdα and Wrα are defined for every weak variable or array α . Also, Valα may be
considered as regular Cubicle arrays.

Convenience notations

For simplicity, we use the following notations to represent the different sets of variables that we often
use:

• X : the set of all regular (i.e. non-weak) arrays (x,y...)

• X̂ : the set of all regular arrays (x,y...) and event values (Valα , Valβ ...)

• A0: the set of all weak variables

• A1: the set of all weak arrays

• A: the set of all weak variables and arrays (A0 ∪ A1)

• A0
t , A1

t and At : similar to the A0, A1 and A sets, but restricted to the variables and arrays manipulated
by a transition t

From the programmer’s point of view, only X and the different A’s are relevant. However, the translated
formulas in LE mainly use X̂ , since they explicitly manipulate events and their values.

We also often use the two following notations as shortcuts to represent common expressions:

∆(~e) =
∧

(e1,e2)∈~e
e1 6= e2 i.e. all elements of~e are different

♦(~e) =
∧

(e1,e2)∈~e
ghb-equal(e1,e2) i.e. all elements of~e are ghb-equal

6 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

Interpretation

The explicit language LE is to be interpreted as follows:

M [c] = M (c)
M [i] = M (i)
M [e] = M (e)
M [X [j]] = XM (M [j]])
M [Valα(e)] = ValαM (M [e])
M [Valα(e, j)] = ValαM (M [e],M [j])
M |= t1 op t2 = M [t1] op M [t2]
M |= ghb(e1,e2) = (M [e1],M [e2]) ∈ ghbM

M |= ghb-equal(e1,e2) = (M [e1],M [e2]) ∈ ghb-equalM

M |= Rdα(e, i) = (M [e],M [i]) ∈ Rdα
M

M |= Rdα(e, i, j) = (M [e],M [i],M [j]) ∈ Rdα
M

M |= Wrα(e, i) = (M [e],M [i]) ∈Wrα
M

M |= Wrα(e, i, j) = (M [e],M [i],M [j]) ∈Wrα
M

M |= fence(e, i) = (M [e],M [i]) ∈ fenceM

M |= ¬a = M 6|= a
M |= qff1∧qff2 = M |= qff1 and M |= qff2
M |= qff1∨qff2 = M |= qff1 or M |= qff2
M |= ∀x : type. f = M {x 7→ v} |= f for all v ∈D type

M |= ∃x : type. f = M {x 7→ v} |= f for some v ∈D type

The domain of the model is partitioned according to the types proc, representing the process identi-
fiers, eid, representing the event identifiers, and val, for the different values of variables and arrays. We
have DM = D proc]Deid]Dval .

We also define Dur ⊆ Deid the subset of event identifiers that contains only unsatisfied read events,
i.e read events that are not connected to any write, and we have:

∀er ∈Dur.unsat_read(er)

unsat_read(er) = ∀i, j,k ∈D proc,∀ew ∈Deid .er = ew∨((∨
α∈A0

(er, i) ∈ Rdα ∧ (ew, j) ∈Wrα

)
∨(∨

α∈A1
(er, i,k) ∈ Rdα ∧ (ew, j,k) ∈Wrα

)
→ (er,ew) ∈ ghb

)

Initial state

The initial state describes the constraints on regular arrays and weak variables and arrays. It is described
by a formula in LD , parameterized by a universally quantified process variable. Accesses to weak
variables must use the α or α[j] form (i @ α and i @ α[j] are not allowed). Also, the fence() literal may
not be used.

We consider an initial state formula I, parameterized by a set of regular variables X and written as
follows in the description language LD :

I(X) = ∀ j : proc.I (j,X)

S. Conchon, D. Declerck & F. Zaïdi 7

To obtain the equivalent formula Ĩ in LE , we apply the transformation function JKI:

Ĩ(X̂) = JI(X)KI = ∀i, j : proc,∀~eα : ur.
∧

α∈A0

Rdα(eα , i) ∧
∧

α∈A1

Rdα(eα , i, j) ∧ JI (j,X)KI

This function generates a read event for every weak variable or array of the system, not only those
actually used in I (however, only those will also have a value associated to). We have one event identifier
eα per weak variable or array α . The event identifiers are chosen in the domain Dur, which restricts the
events to the reads that must take their value from the initial state. The process performing the operation
is represented by the universally quantified variable i. This means that, in the initial state, any process
reading a weak variable or array will obtain the same value. Note that since the resulting formula makes
use of event value terms (Valα), the formula Ĩ is parameterized by the set X̂ (while I was parameterized
by X).

The transformation function JKI : LD →LE is defined as follows:

Jqff1∧qff2KI = Jqff1KI ∧ Jqff2KI

J¬aKI = ¬JaKI

JtrueKI = true
JfalseKI = false

Jt1 op t2KI = Jt1KI op Jt2KI

JαKI = Valα(eα)
Jα[j]KI = Valα(eα , j)

JtKI = t when t 6= α and t 6= α[j]

States

States represent the contraints on regular arrays, events, events values and relations. They are not meant
to be manipulated directly by the programmer, so they are expressed in LE , and are parameterized by a
set X̂ .

A state is represented by a formula of the following form:

ϕ(X̂) = ∃~e : eid.∆(~e)∧Φ(~e, X̂)

This means that a state uses a set of event identifiers that are all different. The second part of the
formula, Φ, is of the following form:

Φ(~e, X̂) = ∃~j : proc.∆(~j)∧φ(~e,~j, X̂)

Similarly to events, the state uses a set of process identifiers that are all different. φ(~e,~j, X̂) is a
conjunction of literals that actually describes the constraints.

Bad states

Bad states allow to describe the dangerous states of the system in terms of constraints on regular arrays
and weak variables and arrays. They are described by a formula in LD , parameterized by a set of regular
variables X . They make use of a set of existentially quantified process variables. Contrary to the initial
state, different processes may have different views of some weak variable, so accesses to weak variables
must use the i @ α and i @ α[j] form (α and α[j] are not allowed). Also, fence() may not be used.

8 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

We consider a bad state formula Θ, written as follows in the description language LD :

Θ(X) = ∃~j : proc.∆(~j)∧ϑ(~j,X)

To obtain the equivalent formula Θ̃ in LE , we apply the transformation function JKu:

Θ̃(X̂) = JΘ(X)Ku = ∃~e : eid.∆(~e)∧♦(~e)∧θ(~e,X)

Where:
θ(~e,X) = ∃~j : proc.∆(~j)∧ Jϑ(~j,X)K~eu

The translation function transforms every weak variable or array access to a read event, and generates
one event identifier ei per process.

The translation function JKu : LD × ~eid→LE is defined as follows:

Jqff1∧qff2K~eu = Jqff1K~eu∧ Jqff2K~eu
JaK~eu = JaK~euE

∧ JaK~euV

J¬aK~eu = JaK~euE
∧¬JaK~euV

Jt1 op t2K~euE
= Jt1K~euE

∧ Jt2K~euE

Jt1 op t2K~euV
= Jt1K~euV

op Jt2K~euV

Ji @ αK~euE
= Rdα(ei, i) ei ∈~e

Ji @ αK~euV
= Valα(ei) ei ∈~e

Ji @ α[j]K~euE
= Rdα(ei, i, j) ei ∈~e

Ji @ α[j]K~euV
= Valα(ei, j) ei ∈~e

JtK~euE
= true when t 6= i @ α and t 6= i @ α[j]

JtK~euV
= t when t 6= i @ α and t 6= i @ α[j]

Note that the function JKu makes use of two sub-functions JKuE and JKuV . The first one is used to build
the literals describing the events, while the second one is used to build the event value terms.

Transitions

Transitions describe the changes made to regular arrays and weak variables and arrays. They are com-
posed of a guard, representing the conditions that must be met for the transition to be executed, and
actions, which may be updates of regular arrays or and updates of weak variables and arrays. They are
expressed in the description language LD , with the restriction that accesses two weak variables must use
the α or α[j] form (i @ α and i @ α[j] are not allowed). Also, the fence() predicate may only be used
in the guard.

We consider a transition t, written as follows in the description language LD :

t(X ,X ′) = ∃i,~j : proc.∆(~j)∧ γ(i,~j,X) ∧∧
x∈X

x′[i] = δx(i,~j,X) ∧∧
α∈A0

t

α ′ = δα(i,~j,X) ∧∧
α∈A1

t

∧
k∈~j

α ′[k] = δα(i,~j,X)

The existentially quantified process i is the process performing the actions. This also means non-
weak array terms are restricted to x[i]. Note that process i may be equal to some process in ~j.

S. Conchon, D. Declerck & F. Zaïdi 9

To obtain the equivalent transition t̃ in LE , we apply the transformation function JKt , which must be
given two fresh event identifiers er and ew:

t̃(X̂ , X̂ ′,er,ew) = Jt(X ,X ′)Ker,ew
t

Where:

Jt(X ,X ′)Ker,ew
t = ∃i,~j : proc.∆(~j)∧ er 6= ew∧ghb-equal(er,ew)∧ Jγ(i,~j,X)Ki,er

γ ∧∧
x∈X

(
Jx′[i] = δx(i,~j,X)Ki,er

γ ∧ (∀k.k = i ∨ x′[k] = x[k])
)
∧∧

α∈A0
t

Wrα(ew, i)∧ JVal′α(ew) = δα(i,~j,X)Ki,er
γ ∧∧

α∈A1
t

∧
k∈~j

Wrα(ew, i,k)∧ JVal′α(ew,k) = δα(i,~j,X)Ki,er
γ

This translation ensures the two event identifiers er and ew are different, and links them in the ghb-
equal relation. The regular array updates are extended so that all array cells different from i receive
a value equals to the previous one. The weak variable and array updates generate write events. The
translation of the guard and updates is further delegated to the function JKγ : LD × proc× eid→LE .

Jqff1∧qff2K
i,er
γ = Jqff1K

i,er
γ ∧ Jqff2K

i,er
γ

JaKi,er
γ = JaKi,er

γE ∧ JaKi,er
γV

J¬aKi,er
γ = JaKi,er

γE ∧¬JaKi,er
γV

Jfence()Ki,er
γE = fence(er, i)

Jfence()Ki,er
γV = true

Jt1 op t2K
i,er
γE = Jt1K

i,er
γE ∧ Jt2K

i,er
γE

Jt1 op t2K
i,er
γV = Jt1K

i,er
γV op Jt2K

i,er
γV

JαKi,er
γE = Rdα(er, i)

JαKi,er
γV = Valα(er, i)

Jα[j]Ki,er
γE = Rdα(er, i, j)

Jα[j]Ki,er
γV = Valα(er, i)

JtKi,er
γE = true when t 6= α and t 6= α[j]

JtKi,er
γV = t when t 6= α and t 6= α[j]

4 Backward reachability

Our approach relies on a rather classical backward reachability algorithm (function BWD below), whose
objective is to check whether there is a possible path from the initial state to the dangerous states. How-
ever, the pre-image computation has been extended to produce events and relations, according to our
weak memory semantics. The algorithm takes as input a transition system S = (Q, I,τ) and a cube Θ,
where I is a formula describing the initial states of the system, τ is the set of all transitions, and Θ a cube
describing the dangerous states. It maintains a set of visited states V and a working queue of cubes Q.

10 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

1 function BWD(S ,Θ) : begin
2 V := /0;
3 push(Q,JΘKu);
4 while not_empty(Q) do
5 ϕ := pop(Q);
6 if ϕ ∧ JIKI satisfiable then
7 return unsafe
8 end
9 else if ϕ 2 V then

10 V := V ∪{ϕ};
11 push(Q,PREτ(ϕ));
12 end
13 end
14 return safe

We assume the fomulas describing states to be of the form:

ϕ(X̂) = ∃~e : eid.∆(~e)∧Φ(~e, X̂)

The pre-image of a formula ϕ with respect to the set of transitions τ (line 11) is given by:

PREτ(ϕ)(X̂) =
∨
t∈τ

PREt(ϕ)(X̂)

The pre-image of a formula ϕ with respect to a single transition t is given by:

PREt(ϕ)(X̂) = ∃X̂ ′,∃er,ew,~e : eid.∆(er·ew·~e) ∧
Jt(X ,X ′)Ker,ew

t ∧Φ(~e, X̂ ′) ∧
extend_ghb(er,ew,~e)∧ r f f r(X ,X ′,ew,~e)

This pre-image generates two new event identifiers er and ew. We ensure these identifiers to be
different from those in ϕ using the expression ∆(er·ew·~e). These identifiers are given as parameters to
the translation function JKt , which ensures the transition only manipulates new events.

The r f f r function determines whether the new writes ew from the transition t satisfy the compatible
unsatisfied reads in Φ(~e, X̂ ′), and if so orders them appropriately in the ghb relation. A read and a write
are compatible if they refer to the same variable or the same array with the same parameters (the actual
value associated to the events is irrelevant to this notion of compatibility). For each unsatisfied read in~e,
either:

• there is a compatible write ew from the same process, so the read MUST take its value from this
write

• there is a compatible write ew from a different process, in this case the read MAY take its value
from this write ; if it does, ew is before er in ghb, otherwise er is before ew in ghb

• there is no compatible write ; the read remains unsatisfied

S. Conchon, D. Declerck & F. Zaïdi 11

This implies the following logical definition of r f f r:

r f f r(X ,X ′,ew,~e) =
∧

α∈A

∧
er∈~e

(
∃i,k : proc.unsat_readα(er, i,k,~e)→

internal_r f f rα(X ,X ′,er,ew, i,k) Y
external_r f f rα(X ,X ′,er,ew, i,k) Y

no_r f f rα(X ,X ′,er,ew,k)
)

internal_r f f rα(X ,X ′,er,ew, i,k) = Wrα(ew, i,k)∧Valα ’(er,k) = Valα ’(ew,k)

external_r f f rα(X ,X ′,er,ew, i,k) = ∃ j : proc. j 6= i∧Wrα(ew, j,k) ∧
(Valα ’(er,k) = Valα ’(ew,k)∧ghb(ew,er) ∨
Valα ’(er,k) = Valα(er,k)∧ghb(er,ew)

no_r f f rα(X ,X ′,er,ew, i,k) = (6 ∃ j : proc.Wrα(ew, j,k))∧Valα ’(er,k) = Valα(er,k)

r f f r also relies on the unsat_readα function, that allows to determine if some read event er is not
satisfied by any write event in~e for some weak variable α:

unsat_readα(er, i,k,~e) = Rdα(er, i,k)∧
∧

ew∈~e

(
er = ew∨

(
∀ j : proc.Wrα(ew, j,k)→ ghb(er,ew)

))
The extend_ghb function extends the ghb relation by adding literals of the form ghb(e_1, e_2) and

ghb-equal(e_1, e_2) in the formula, according to the dependencies between the new events er and ew and
old events in~e.

extend_ghb(er,ew,~e) = ppo(er·ew,~e)∧ f ence(ew,~e)∧ co(ew,~e)∧ f r(er,~e)

f r adds ghb pairs between the new read(s) er and the old writes.

f r(er,~e) =
∧

α∈A

∧
ew∈~e

(
∃k : proc.read_onα(er,k)∧write_onα(ew,k)→ ghb(er,ew)

)
co adds ghb pairs between the new write(s) ew and the old writes.

co(ew1 ,~e) =
∧

α∈A

∧
ew2∈~e

(
∃k : proc.write_onα(ew1 ,k)∧write_onα(ew2 ,k)→ ghb(ew1 ,ew2

)
f ence adds ghb pairs between the new writes(s) ew and the subsequent reads by the same process

separated by a fence predicate.

f ence(ew,~e) =
∧

er∈~e

(
∃i : proc. fence(er, i)∧write_by(ew, i)∧ read_by(er, i)→ ghb(ew,er)

)
ppo adds ghb pairs between the new events ea and the subsequent events eb by the same process if

they are read-read, read-write or write-write pairs.

ppo(~ea,~eb) =
∧

e1∈~ea

∧
e2∈~eb

(
ppo_RR(e1,e2)∧ ppo_RW (e1,e2)∧ ppo_WW (e1,e2)

)
ppo_RR(e1,e2) = ∃i : proc.read_by(e1, i) ∧ read_by(e2, i)→ ghb(e1,e2)

12 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

ppo_RW (e1,e2) = ∃i : proc.read_by(e1, i) ∧ write_by(e2, i)→ ghb(e1,e2)

ppo_WW (e1,e2) = ∃i : proc.write_by(e1, i) ∧ write_by(e2, i)→ ghb(e1,e2)

The following read_onα and write_onα predicates allow to easily check whether some event identi-
fier e corresponds to a read or a write event on a specific weak variable α or array cell α[k].

read_onα(e,k) = ∃i : proc.Rdα(e, i)∨Rdα(e, i,k)

write_onα(e,k) = ∃i : proc.Wrα(e, i)∨Wrα(e, i,k)

Similarly, the read_by and write_by predicates allow to check whether some event identifier e corre-
sponds to a read or a write event performed by a specific process i.

read_by(e, i) = ∃k : proc.
∨

α∈A0
Rdα(e, i)∨

∨
α∈A1

Rdα(e, i, j)

write_by(e, i) = ∃k : proc.
∨

α∈A0
Wrα(e, i)∨

∨
α∈A1

Wrα(e, i, j)

5 Example

We illustrate our backward reachability algorithm through a simple example. We consider a simple
parameterized mutual exclusion algorithm, where each process executes the automaton below.

Idle

Want

Crit

∀k � i.Xk = ⊥ ^ fence() Xi :=
⊥

Xi := ⊥

This automaton is trivially encoded into the following transition system, where the current state is repre-
sented by a regular array PC, and the shared variables Xi are expressed as a weak array X.

t_req = ∃i : proc.PC[i] = Idle∧PC′[i] =Want ∧X ′[i] = True

t_enter = ∃i : proc.PC[i] =Want ∧ fence()∧ (∀k.k = i∨X [i] = False)∧PC′[i] =Crit

t_exit = ∃i : proc.PC[i] =Crit ∧PC′[i] = Idle∧X ′[i] = False

The initial state is simply defined as:

I = ∀ j : proc.PC[j] = Idle∧X [j] = False

The property we would like to check is that no pair of processes i and j can be in state Crit at the same
time, i.e. that the following formula never holds:

Θ = ∃i, j : proc. i 6= j∧PC[i] =Crit ∧PC[j] =Crit

By applying the translation functions on the system above, we obtain the following event-explicit
transition system:

Ĩ = ∀i, j : proc,∀eX : ur.PC[j] = Idle∧RdX(eX , i, j)∧ValX(eX , j) = False

S. Conchon, D. Declerck & F. Zaïdi 13

Θ̃ = ∃i, j : proc. i 6= j∧PC[i] =Crit ∧PC[j] =Crit

t̃_req(er,ew) = ∃i : proc.er 6= ew∧ghb-equal(er,ew) ∧
PC[i] = Idle ∧
PC′[i] =Want ∧WrX(ew, i, i)∧Val′X(ew, i) = True

t̃_enter(er,ew) = ∃i : proc.er 6= ew∧ghb-equal(er,ew) ∧
PC[i] =Want ∧ fence(er, i) ∧
(∀k.k = i∨RdX(er, i,k)∧ValX(er, i) = False) ∧
PC′[i] =Crit

t̃_exit(er,ew) = ∃i : proc.er 6= ew∧ghb-equal(er,ew) ∧
PC[i] =Crit∧
PC′[i] = Idle∧WrX(ew, i, i)∧Val′X(ew, i) = False

The graph below gives a possible exploration of the system’s state space by our algorithm. We start by
node 1, which represents the formula describing the dangerous states Θ̃. Then, each node represents the
result of a pre-image computation by an instance of a transition. The edges are labeled with the transition
name and the process identifier we used to instantiate the existentially quantified process variable in the
transition. Remark that formulas in the graph’s nodes are implicitly existentially quantified and that a
process identifier i is written #i. Also, to avoid cluttering the graph, we omit event identifiers in the edge
labels, we remove the unused event identifiers from the nodes (they do not contribute to ghb), and we
assume all event identifiers to be different.

PC[#1] = Crit,
PC[#2] = Crit

PC[#1] = Want, PC[#2] = Idle,
RdX(e1,#2,#1), ValX(e1,#1) = False,
RdX(e2,#1,#2), ValX(e2,#2) = False,

WrX(e3,#2,#2), .
fence(e1,#2), fence(e2,#1)

ghb(e3,e1), ghb(e2,e3)

PC[#1] = Idle, PC[#2] = Idle
RdX(e1,#2,#1), ValX(e1,#1) = False,
RdX(e2,#1,#2), ValX(e2,#2) = False,

WrX(e3,#2,#2), .
WrX(e4,#1,#1), .

fence(e1,#2), fence(e2,#1)
ghb(e3,e1), ghb(e2,e3)
ghb(e4,e2), ghb(e1,e4)

PC[#1] = Want, PC[#2] = Idle,
RdX(e1,#2,#1), ValX(e1,#1) = False,
RdX(e2,#1,#2), ValX’(e2,#2) = False,
WrX(e3,#2,#2), ValX’(e3,#2) = True,

fence(e1,#2), fence(e2,#1),
ghb(e3,e1), ghb(e3,e2),

ValX’(e2) = ValX’(e3)

PC[#1] = Want, PC[#2] = Want,
RdX(e1,#2,#1), ValX(e1,#1) = False,
RdX(e2,#1,#2), ValX(e2,#2) = False,

fence(e1,#2), fence(e2,#1)

PC[#1] = Crit, PC[#2] = Want,
RdX(e1,#2,#1), ValX(e1,#1) = False,

fence(e1,#2) .

t_req(#1)

t_req(#2)

t_req(#2)

t_enter(#1)

t_enter(#2)
1 2

3

4

5

6

~

~

~

~

~

We focus on node 3 which results from the pre-image of node 1 by t_enter(#2) then t_enter(#1).
In this state, both processes have read False in X (events e1 and e2). Also, since there is a memory
barrier in t_enter, both reads are associated to a fence literal. The pre-image of node 3 by t_req(#2)
introduces a new write event WrX(e3,#2,#2) with an associated value ValX’(e3,#2) = True. Since
there is a memory barrier fence(e1,#2) on e1 by the same process #2, the extend_ghb predicate causes

14 A Backward Reachability Algorithm for Parameterized Systems on Weak Memory

ghb(e3,e1) to be added to the formula. Now, the r f f r predicate dictates that this new write event may
or may not satisfy the read e2, so we must consider both cases (node 4 and 5).

In node 4, we consider the case where the write event e3 satisfies the read event e2. As prescribed
by the external_r f f r predicate, the equality ValX’(e2,#2) = ValX’(e3,#2) is added to the formula,
which obviously makes it inconsistent. In node 5, the write event e3 does not satisfy the read event
e2, so the value ValX’(e3,#2) is discarded and ghb(e2,e3) is added to the formula, as indicated by
the no_r f f r predicate. Similarly, the pre-image of node 5 by t_req(#1) yields the formula in state 6
where the new write event e4 does not satisfy the read event e1. Now, the ghb relation is not a valid
partial order as the sequence ghb(e2,e3),ghb(e3,e1),ghb(e1,e4),ghb(e4,e2) forms a cyclic relation.
Therefore, this state is discarded and the program is declared safe.

Remark that if we removed the fence predicate in t_enter, then we would only have ghb(e3,e1),
ghb(e4,e2) in state 6, which is a valid partial order relation, so the formula would intersect with the
initial state and the program would be unsafe.

6 Implementation

We have implemented this framework in Cubicle-W [1] and used it to check the correctness of several
parameterized concurrent algorithms on a TSO-like model whose source codes are available on the tool’s
webpage.

Table 1 gives for each benchmark the number of non-weak arrays, the number of weak variables, the
number of weak arrays, the number of transitions and the running time. The S/US next to the benchmark
name indicates whether the algorithm is correct or not. Incorrect algorithm have a second version that
was fixed by using fence predicates.

Case study Arrays Weak Var. Weak Arr. Transitions Time
naive mutex US 1 0 1 4 0.04s
naive mutex S 1 0 1 4 0.30s
lamport US 1 4 0 8 0.10s
lamport S 1 4 0 8 0.60s
spinlock S 1 1 0 6 0.07s
sense reversing barrier S 1 0 1 4 0.06s
arbiter v1 S 2 1 1 7 0.18s
arbiter v2 S 2 0 2 8 13.5s
two phase commit S 1 1 1 5 54.1s

Table 1: Performance of Cubicle-W

The results shown in this table look promising. Although these benchmarks are of modest size, they
are already consider as very challenging for state-of-the-art model checkers for weak memories as they
combined parametricity, concurrency and non trivial used of weak memories.

7 Conclusion & Future Work

We have presented in this paper an extention of Model Checking Modulo Thoeires (MCMT) for model
checking parameterized transitions with explicit read and write operations on weak memories.

S. Conchon, D. Declerck & F. Zaïdi 15

The core of our procedure is a backward reachability algorithm combined with an SMT axiomatic
model for reasoning about weak memory. The explicit relaxed consistency model underlying our frame-
work is similar to x86-TSO where the effect of a store operation by a process is delayed (due to a store
buffering) to all processes.

We have implemented this framework in Cubicle-W , a conservative extension of the Cubicle model
checker. Our first experiments show that our implementation is expressive and efficient enough to prove
safety of concurrent algorithms, for an arbitrary number of processes, ranging from mutual exclusion to
synchronization barriers.

Immediate future work includes the support for other models, such as PSO. We are also working on
the extension of Cubicle’s invariant generation mechanism for weak memory. With this mechanism, we
should gain in efficiency and be able to tackle even more complex programs. Finally, we also plan to
investigate how our framework for weak memories could be extended to reason about programs commu-
nicating via channels.

References
[1] https://www.lri.fr/~declerck/cubiclew/.
[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani & Tuan Phong Ngo (2016): The Benefits of

Duality in Verifying Concurrent Programs under TSO. In: CONCUR.
[3] Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda & Ahmed Rezine (2007): Regular Model

Checking Without Transducers. In: TACAS, Springer.
[4] Parosh Aziz Abdulla, Giorgio Delzanno & Ahmed Rezine (2007): Parameterized verification of infinite-state

processes with global conditions. In: CAV, Springer.
[5] Jade Alglave, Luc Maranget & Michael Tautschnig (2014): Herding Cats: Modelling, Simulation, Testing,

and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36(2), pp. 7:1–7:74.
[6] K R Apt & D C Kozen (1986): Limits for automatic verification of finite-state concurrent systems. Inf.

Process. Lett. 22(6), pp. 307–309.
[7] E. M. Clarke, O. Grumberg & M. C. Browne (1986): Reasoning About Networks with Many Identical Finite-

state Processes. In: PODC, ACM, New York, NY, USA.
[8] Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout & Fatiha Zaïdi (2012): Cubicle: A Parallel SMT-

based Model Checker for Parameterized Systems: Tool Paper. In: CAV, Berlin, Heidelberg.
[9] Steven M. German & A. Prasad Sistla (1992): Reasoning about systems with many processes. J. ACM 39(3),

pp. 675–735.
[10] Silvio Ghilardi, Enrica Nicolini, Silvio Ranise & Daniele Zucchelli (2008): Towards SMT Model Checking

of Array-Based Systems. In: Automated Reasoning, 5195, pp. 67–82.
[11] Silvio Ghilardi & Silvio Ranise (2010): MCMT: A Model Checker Modulo Theories. In: IJCAR, pp. 22–29.
[12] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli & Magnus O. Myreen (2010): X86-

TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. CACM 53(7).

https://www.lri.fr/~declerck/cubiclew/

	Introduction
	Preliminaries : axiomatic memory models
	Weak Memory Array-Based Transition Systems
	Backward reachability
	Example
	Implementation
	Conclusion & Future Work

